2023國家地震工程研究中心實驗成果暨工程實務研討會(臺南場)

親愛的會員好:
代轉發國家地震工程研究中心實驗成果暨工程實務研討會邀請資訊.

本研討會邀請去(111)年於本中心臺南實驗室各測試系統進行實驗之研究團隊,
以口頭演講方式發表最新實驗與研究成果。
此外,本次特別邀請University of California, San Diego. Professor Georgios Tsampras及
台南市結構工程技師公會-施忠賢理事長、蔡萬來技師、台南市土木技師公會-許引絃理事長
以及高雄市結構工程工業技師公會-侯政成理事長分享工程實務經驗,
透過此平台提供地震工程領域專家、學者一個面對面交流與分享的機會。
藉由分享與交流,期能提供學界人員在未來進行結構實驗規劃及執行時能更加周詳有效率,
亦可使工程界先進了解地震工程領域最新研究趨勢與成果,創造更多產學合作與應用機會。

歡迎各位先進踴躍參加!

※研討會提供專業技師、建築師與公務人員,請於報名系統登錄相關資訊。
※研討會提供參與學生研習證明。

時間:112年12月4日(星期一)
地點:國震中心臺南實驗室101演講廳(臺南市歸仁區中正南路一段2001號)
報名方式:即日起至112年11月30日前完成報名
報名費用:免費
報名網址與活動資訊:https://conf.ncree.org.tw/index.aspx?n=NCE202310
聯絡資訊: hwhuang@narlabs.org.tw / 06-230-7060#1901 黃瀚緯先生

中華民國結構工程學會 敬啟-11/15/2023

 

附件 :

議程邀請卡

建築非結構物耐震研究講習會邀請資訊

親愛的會員好:
代轉發建築非結構物耐震研究講習會邀請資訊.

國立成功大學姚昭智教授團隊與建研所合作進行建築非結構物耐震評估及補強初步研究,提出針對震後重要建築物維持運作機能之非結構耐震評估方法及補強建議。

團隊將於2023年11月11日舉辦建築非結構物耐震研究講習會,邀請國內建築耐震相關研究專家學者,針對相關研究主題、實務案例進行分享。

涵蓋主題有:
1.電機設備管路耐震規劃與實務
2.重要建築物內部非結構構件耐震評估與驗證
3.住宅空間家具家電之震災安全防護
4.醫院及計算機中心的功能性設備物抗震評估及工法案例研究

歡迎各位先進踴躍參加!

※本講習會已向行政院公共工程委員會申請[土木工程]、[結構工程]、[電機工程]技師換證積點,及[公務人員]終身學習積點。
※本講習會已向內政部國土管理署申請[建築師]換證積點。

時間:112年11月17日(星期五) 下午02:00至下午05:00
地點:大坪林聯合開發大樓15樓國際會議廳(新北市新店區北新路三段200號)
報名方式:即日起至112年11月15日完成報名
報名費用:免費
報名網址與活動資訊:https://forms.gle/9To4S6t9jZyY5XHi9
聯絡資訊:jemmy_hsu@gs.ncku.edu.tw / 06-2757575#54136 許小姐

中華民國結構工程學會 敬啟-10/25/2023

附件 :

附件_議程表

代轉發國立台灣大學應用力學研究所教師徵聘中英文啟事

親愛的會員好:
 
  代轉發國立台灣大學應用力學研究所教師徵聘中英文啟事及教職申請基本資料表(中、英文版),謝謝.
 
 
中華民國結構工程學會 敬啟-10/17/2023
附件 :

建築結構火害後安全與殘留耐震能力評估講習會

主辦單位:內政部建築研究所、財團法人國家實驗研究院國家地震工程研究中心、中華民國地震工程學會、國立成功大學

時 間:112年11月27日(星期一) 下午01:30至下午5:30

地 點:大坪林聯合開發大樓15樓國際會議廳

(新北市新店區北新路三段200號)

費 用:免費

名 額:額滿為止。

報名方式:即日起至112年11月22日完成報名。

報名網址:https://conf.ncree.org.tw/IndexCht.aspx?n=A11211270

聯絡電話:02-66305183 連乾翰 先生

備 註:

(一)本講習會已向行政院公共工程委員會申請技師換證積點,及公務人員終身學習積點。

 

鋼骨鋼筋混凝土構造技術講習會

主辦單位:內政部建築研究所、財團法人國家實驗研究院國家地震工程研究中心

協辦單位:中華民國地震工程學會、中華民國結構工程學會

時 間:112年11月17日(星期五) 上午09:00至中午12:00

地 點:大坪林聯合開發大樓15樓國際會議廳

(新北市新店區北新路三段200號)

費 用:免費

名 額:額滿為止。

報名方式:即日起至112年11月15日完成報名。

報名網址:https://conf.ncree.org.tw/index.aspx?n=A11211170

聯絡電話:02-66305183 連乾翰 先生

備 註:

(一)本講習會已向行政院公共工程委員會申請技師換證積點,及公務人員終身學習積點。

「2023女科技人大會-科技女力國際進行式-前導」

親愛的會員您好,
台灣女科技人學會即將於今年10/27(五)盛大舉辦
「2023女科技人大會-科技女力國際進行式-前導」
訊息,敬邀各位工程先進踴躍報名參與.

相關訊息詳如附檔.
更多大會資訊,請參見官網:http://wist2023.twist.org.tw/

中華民國結構工程學會 敬啟-10/13/2023

附件 :

2023女科技人大會宣傳文字

2023女科技人大會宣傳海報

「2023鋼筋混凝土標準圖講習會/1028台北場-第二場」

親愛的會員您好,
代轉發「2023鋼筋混凝土標準圖講習會/1028台北場-第二場」
訊息,敬邀各位工程先進踴躍報名參與.

會議名稱:「2023鋼筋混凝土標準圖講習會/1028台北場第二場」
會議時間:2023年10月28日(六)8:40~16:00

會議地點:國立台灣科技大學 綜合研究大樓一樓105室 (台北市基隆路四段43號)

報名費用:新台幣500元
報名資訊詳見附檔

中華民國結構工程學會 敬啟-10/13/2023

附件 :

2023鋼筋混凝土標準圖講習會20231028_簡章

Vol.38/No.3 (149) (2023)

Vol.38/No.3 (149) (2023)

Special Issue: The Sixteenth National Conference on Structural Engineering and The Sixth National Conference on Earthquake Engineering
Guest Editor:  Professor Chien-Kuo Chiu, Professor Pei-Ching Chen

TitleOptimal Design of Steel Panel Damper in MRF and Optimal Design Software
AuthorYe-Ying Jan, Keh-Chyuan Tsai
Keywords

steel panel damper, moment resisting frame, seismic design, optimization, software development, web service.

Abstract

Incorporating a steel panel damper (SPD) into a moment resisting frame (MRF) can increase the stiffness, strength, and energy dissipation ability of the MRF. This research improves the previous optimization algorithm by using Sequential Least Squares Programming (SLSQP) nonlinear programming algorithm. The chosen algorithm takes less than one second to complete the optimization.Time-efficient algorithm has helped the authors to implement an optimization software into a web service to users. This paper demonstrates the optimization of single-cruciform (SC) and double-cruciform (DC) types of SPDs-to-beam subassemblies. Each SC or DC type has “Basic Design (BD)” and “1.5 times stiffened Design (1.5KD)” In the BD, the optimal depth of SPD in SC type is around 700~1200mm, while around 500~800mm in DC type. The optimal beam depth of SC type is around 700~1100mm, while around 600~800mm in DC type. The DC type can save up to 300 mm less beam depth than the SC type for a strong SPD of 1500kN nominal shear strength. Comparing the BD with the 1.5KD for both the SC and DC type subassemblies, the top three largest increases of dimensions are web thickness of elastic joint (EJ), boundary beam depth and web thickness. Applying a gravity load effect ratio 𝜉, it’s found that one can consider a ratio of 𝜉 up to 0.15 to consider the gravity load effect in the optimization without much additional cost. In the case of an 8-meter boundary beam with an SPD location eccentricity of 0.2 times the beam span, the induced SPD axial force would exceed 0.15 times of compression yield capacity of the EJ segment. It is recommended that the eccentricity be limited to less than 0.2 times the beam span. In the cases when boundary beam sizes are specified first, it is found that the DC type designs are more efficient in increasing structural stiffness than the SC type designs for the SPD-MRFs with long-span beams.

TitleShaking table test of damped-outrigger structure incorporating friction dampers
AuthorMing-Ching Chen,Meng-Lin Chung, Pao-Chun Lin
Keywordsoutrigger, large-scale test, friction damper, numerical analysis, steel structure
Abstract

The main purpose of this study is to investigate the seismic performance of damped-outrigger system incorporating friction dampers through numerical analysis and shaking table tests. A 9 m tall steel structure specimen was designed by scaling down a 20-story benchmark model. The specimen was equally divided into ten floors and the outrigger beams together with the friction dampers can be installed in different floors. The normal force in the friction damper is adjustable so that its energy performance can be modified during the test. The seismic response of the specimen was evaluated by performing response spectral analysis (RSA) using the OpenSees numerical model. The equivalent damping ratio was included in the RSA in order to evaluate the energy dissipation resulted from the friction dampers. Based on the RSA results, the specimen configurations when outrigger locates at the sixth (6F), eighth (8F), and roof floors (RF) and when the normal force in the friction damper varies between 5 kN, 10 kN, and 20 kN were tested by imposing five different ground motions with the peak ground acceleration of 0.64g. Both the RSA and test results indicated that the maximum roof drift of the specimen was around 0.7% 0.4%, and 0.3% rad., when the outrigger locates at the RF, 8F, and 6F, respectively. The greater normal force applied in the friction damper generally result in a greater amount of energy dissipation and a smaller roof drift response. Based on the experimental and numerical results, the optimal design of the damped-outrigger system incorporating friction dampers are demonstrated in this study.

TitleThe Study on Prediction of Lateral Load Displacement Force and Behavior of High Strength Steel Fiber Reinforced Concrete Walls with Opening
AuthorChun-Yi Huang, Yi-Ching Ho, Binh Nguyen Doan, Wen-Cheng Liao
KeywordsNew RC, Shear wall with opening, Steel fiber reinforced concrete, Vertical wall segment, Discontinuous zones
Abstract

With the gradual increase in the demand for high-rise buildings, countries all over the world have developed high-strength concrete in order to reduce the size of components to reduce the weight of the structure and increase the usable space efficiently. The New RC project in Taiwan has also begun to promote the use of high-strength materials. It mainly conducts research on construction materials with concrete compressive strength (𝑓c′) above 70MPa and steel yield strength ( 𝑓y ) above 685MPa. However, as the compressive strength of the concrete material increases, its properties will gradually become brittle. Therefore, according to the current code, it is necessary to deploy a large amount of shear reinforcements in the stress interference area or the geometric discontinuity zone (D zone) such as beam-column joints. Stirrups are used to maintain the toughness and shear strength of the parts, but dense shear stirrups cause difficulties in reinforcement assembling during construction, and poor workability of concrete during casting, which results in the poor quality of concrete components. Adding steel fibers to high-strength concrete can delay brittle failure. Since the bridging effect between steel fibers can effectively inhibit the expansion of crack width, it can greatly reduce the configuration of transverse stirrups and solve construction problems.

According to the past experiments on the structural discontinuity area (D area), such as beam-column joints and deep beams, etc., the results show that the use of steel fibers in high-strength concrete can improve the toughness and shear strength of components, so the benefits of steel fiber reinforced concrete in structural discontinuities is known. This study carried out 4 high-strength steel fiber reinforced concrete shear wall experiments as the shear walls that are also members of the structural discontinuity area. The test parameters include the presence or absence of openings, the type of openings, the ratio of steel bars in the wall, the amount of stirrups in the boundary columns, and the configuration of reinforcement bars in the openings. Through the observation of the strength and deformation behavior of the test body and the development of cracks, the role played by steel fibers and the benefits of collocation with transverse reinforcement will be clarified in order to revise the prediction model and provide reference for future design.

TitleShaking Table Test of RC Columns Using High-Strength Flexural Reinforcement with Low Axial Load
AuthorChih-Hsuan Chin, Shun-Bang Yan ,Min-Yuan Cheng
Keywordsshaking table, drift, stiffness, high-strength reinforcement.
AbstractShaking table tests of reinforced concrete columns using high-strength flexural reinforcement and under low axial force (around 0.01 Ag fc’, where Ag and fc’ was the column gross section area and concrete cylinder strength, respectively) were investigated in this research. Two reinforced concrete frame specimens were tested. Each specimen consisted of a concrete base block, two columns with a clear-height-to-depth ratio greater than 12, and a top concrete block. The two specimens were first tested on the shaking table with 16 input ground motions, followed by static test on the strong floor. Specimen C1 used conventional strength longitudinal reinforcement (yield strength of 453 MPa) and specimen H1 used high-strength longitudinal reinforcement (yield strength of 716 MPa). The two specimens were designed to have the same flexural strength. Except for flexural reinforcement ratio and strength, all other design parameters were identical in the two specimens. Shaking table test results indicated the maximum drift of specimen H1 consistently larger than that of specimen C1 in all 16 table motions. The ratio of the maximum drift between the two specimens ranged from 1.3 to 2.4. Before yielding of the longitudinal reinforcement, lateral stiffness of the two specimens decreased as the maximum drift demand increased. Specimen H1 exhibited lower lateral stiffness and damping ratio. The inelastic responses indicated that the maximum strength of the two specimens were similar. Using Shimazaki and Sozen model provided an acceptable upper bound to estimate the maximum drift of specimen C1 but was not conservative for specimen H1. Static test results showed that both specimens sustained the maximum lateral force up to 10% drift ratio. Specimen C1 had severe concrete spalling at the column base. Specimen H1, in addition to severe concrete spalling at the column base, had two longitudinal reinforcement fracture during the 2nd cycle of 10% drift cycle. In general, specimen C1 had larger normalized energy absorption ability than that of specimen H1.
TitleSeismic demand acceleration of non-structural elements attached to building floors using nonlinear pushover analysis.
AuthorTsung-Chih Chiou, Lap-Loi Chung ,Yu-Chih Lai, Yi-Han Chao, Jae-Do Kang, Koichi Kajiwara
Keywordsnonlinear pushover analysis, TEASPA, capacity Spectron, demand acceleration of building floor
AbstractTaiwan Earthquake Assessment for Structures by Pushover Analysis (TEASPA) can provide a capacity spectron of an equivalent single degree of freedom system. The predicted structural response can be applied to determine seismic demand acceleration of non-structural elements attached to building floors. The study adopts the shaking table testing results of ten-story RC building by E-defense in 2015 to verify TEASPA’s predicted response of the building. The predicted capacity Spectron Sa is compared to the maximum acceleration of an equivalent SDOF under a real excitation history. The comparison will be discussed in this paper. Eventually, the study proposed a procedure on seismic demand acceleration for non-structural components attached to building floors.

第三十八卷第三期 (期別149) (112年)

第三十八卷第三期 (期別149) (112年)

第16屆結構工程暨第6屆地震工程研討會特刊

客座主編:邱建國教授、陳沛清教授

標題「第16屆結構工程暨第6屆地震工程研討會特刊」引言
作者邱建國、陳沛清
 

    第十六屆結構工程研討會暨第六屆地震工程研討會於民國一一一年八月二十四日至二十六日於淡水將捷金鬱金香酒店舉辦,為新冠肺炎疫情後結構工程學會首次舉辦的實體大型研討會,共有508人參與,發表超過300 個兼具創新與實務的研究成果。除了研討會之外,更邀請產官學界專業人士共同舉辦兩場產學論壇,特別針對即將修訂與實施的新版規範進行交流與討論,學界亦在論壇上分享新型鋼結構與New RC 結構之相關研發成果及應用技術。

    經由第十六屆結構工程研討會暨第六屆地震工程研討會論文審查委員的討論與推薦,本期結構工程特刊收錄了研討會中鋼結構與鋼筋混凝土結構的最新研究成果數篇,包括「高強度鋼纖維混凝土開口剪力牆往復載重行為及垂直牆段評估計算研究」、「含摩擦阻尼器外伸臂桁架結構耐震性能研究」、「含鋼板阻尼器構架最佳化設計與軟體」、「使用高強度撓曲鋼筋之低軸壓鋼筋混凝土柱振動台試驗」及「應用非線性靜力側推分析訂定建築物樓板需求加速度之程序與驗證」。希冀藉由這些篇章的介紹,使讀者能更了解學界在鋼結構與鋼筋混凝土結構最新的研究成果與發展趨勢,讓臺灣在結構工程與地震工程的技術發展上日新月異。                                   

                                                                    國立臺灣科技大學營建工程系 邱建國 教 授
                                                                                                           陳沛清 副教授 謹誌
                                                                                                結構工程期刊 特刊客座主編
                                                                                                                    2023 年7 月

標題含鋼板阻尼器構架最佳化設計與軟體
作者詹也影、蔡克銓
關鍵字鋼板阻尼器、抗彎構架、耐震設計、最佳化、雲端計算
摘要三段式鋼板阻尼器(SPD)設置於抗彎構架(MRF)中能增加構架的勁度、強度與消能能力。本研究改良之前以混合式演算法計算SPD-MRF最佳化尺寸,以Sequential Least Squares Programming (SLSQP)非線性規劃法,將計算時間降至1秒以內,並將此最佳化程式開發成雲端服務。本研究最佳化的子構架例包含單十字型以及雙十字型,分別設計滿足耐震設計的最小用鋼量尺寸,稱之為「基本設計」,以及1.5倍「基本設計」勁度的「1.5×K設計」。「基本設計」中,單十字構架的SPD最佳化深度約在700~1200mm,而雙十字構架單一支SPD則是500~800mm。單十字構架的最佳化邊界梁深度在700~1100mm,雙十字構架則是600~800mm,雙十字構架可得比單十字構架較淺的梁設計,在大噸位SPD(1500kN)情況,梁深可少300mm。單、雙十字構架從「基本設計」提升勁度到「1.5×K設計」時,尺寸比例增加最多的前三名是:連接段腹板厚、邊界梁深、邊界梁腹板厚。若考慮垂直載重效應比ξ=0.15進行設計,對邊界梁重量及尺寸影響不大。本研究探討0倍、0.1倍、0.2倍梁跨長三種SPD偏心距離對構架的影響,發現 8公尺(短梁跨)範例,0.2倍梁跨偏心距離下,產生的SPD軸力將超過連接段的0.15倍軸壓強度(P_y)。本研究以兩組給定邊界梁設計例,分別為 RH708×302邊界梁跨8公尺的小構架、RH800×300邊界梁跨12公尺的大構架,並分別設計單雙十字型構架,探討實務中常先決定邊界梁再設計SPD,需提升構架勁度的情況。單十字大構架因SPD翼板厚度到達極限,僅設計至0.0046的降伏層間位移角的勁度,而雙十字小構架可設計至目標值0.003的降伏層間位移角,表示在長梁跨構架、給定邊界梁時,雙十字型設計較能有效提升構架勁度。
TitleOptimal Design of Steel Panel Damper in MRF and Optimal Design Software
AuthorYe-Ying Jan, Keh-Chyuan Tsai
Keywords

steel panel damper, moment resisting frame, seismic design, optimization, software development, web service.

Abstract

Incorporating a steel panel damper (SPD) into a moment resisting frame (MRF) can increase the stiffness, strength, and energy dissipation ability of the MRF. This research improves the previous optimization algorithm by using Sequential Least Squares Programming (SLSQP) nonlinear programming algorithm. The chosen algorithm takes less than one second to complete the optimization.Time-efficient algorithm has helped the authors to implement an optimization software into a web service to users. This paper demonstrates the optimization of single-cruciform (SC) and double-cruciform (DC) types of SPDs-to-beam subassemblies. Each SC or DC type has “Basic Design (BD)” and “1.5 times stiffened Design (1.5KD)” In the BD, the optimal depth of SPD in SC type is around 700~1200mm, while around 500~800mm in DC type. The optimal beam depth of SC type is around 700~1100mm, while around 600~800mm in DC type. The DC type can save up to 300 mm less beam depth than the SC type for a strong SPD of 1500kN nominal shear strength. Comparing the BD with the 1.5KD for both the SC and DC type subassemblies, the top three largest increases of dimensions are web thickness of elastic joint (EJ), boundary beam depth and web thickness. Applying a gravity load effect ratio 𝜉, it’s found that one can consider a ratio of 𝜉 up to 0.15 to consider the gravity load effect in the optimization without much additional cost. In the case of an 8-meter boundary beam with an SPD location eccentricity of 0.2 times the beam span, the induced SPD axial force would exceed 0.15 times of compression yield capacity of the EJ segment. It is recommended that the eccentricity be limited to less than 0.2 times the beam span. In the cases when boundary beam sizes are specified first, it is found that the DC type designs are more efficient in increasing structural stiffness than the SC type designs for the SPD-MRFs with long-span beams.

標題含摩擦阻尼器外伸臂結構耐震性能研究
作者陳旻靖、鍾孟霖、林保均
關鍵字外伸臂、大型實驗、摩擦阻尼、數值分析、鋼結構
摘要此研究目的為探討摩擦阻尼器外伸臂結構系統之最佳化分析及耐震性能研究,為驗證數值分析之可靠性,設計縮尺試體進行振動台測試,縮尺試體主要分為10 層,總樓高9 公尺,總重量約15tonf,於實驗前透過OpenSees進行數值模型的建立,進行多模態之非線性反應譜分析探討10 種不同外伸臂高程及6 種摩擦阻尼器正向力之模態週期、模態等效質量。反應譜分析考慮摩擦阻尼器滑動時造成等效阻尼比增加的反應折減,迭代出結構物之最大變形。利用SRSS 方法將各模態反應進行疊加,以探討最大側向變形、層間側位移角、外周柱軸力、傾覆彎矩及等效阻尼比之影響,並透過反應譜分析選擇振動台之外伸臂高程位置及摩擦阻尼器正向力。為更加準確掌握摩擦阻尼器之行為及摩擦係數,另外設計一組摩擦阻尼器進行鋼板之反覆加載測試,以不銹鋼304 作為摩擦材料,阻尼器具有兩個摩擦面,以螺栓作為正向力加載來源,並透過荷重計觀察正向力變化。試驗以不同頻率及不同位移進行反覆加載,從實驗中得出摩擦係數對於溫度及加載頻率的影響極小。振動台實驗選用5 個地震,分別為BCJL2、El Centro、Imperial Valley、Tabas 及ChiChi,最大地表加速度為0.64g,藉由改變外伸臂高程(RF、8F 及6F)及摩擦阻尼器正向力(5kN、10kN 及20kN)探討含摩擦阻尼器之耐震性能。結果顯示,反應譜分析之結果與實驗結果趨勢接近,並根據振動台環境及試驗實際配置修正數值模型,分別對五個地震進行非線性動力歷時分析,探討3 種不同外伸臂位置下之頂層位移、層間側位移角、外周柱軸力及核心柱底彎矩之影響,以及3 種不同摩擦阻尼器正向力下的摩擦阻尼器消能表現。比較反應譜分析、動力歷時分析及振動台試驗之趨勢,探討含摩擦阻尼器外伸臂結構之受震特性及最佳耐震配置。
TitleShaking table test of damped-outrigger structure incorporating friction dampers
AuthorMing-Ching Chen,Meng-Lin Chung, Pao-Chun Lin
Keywordsoutrigger, large-scale test, friction damper, numerical analysis, steel structure
Abstract

The main purpose of this study is to investigate the seismic performance of damped-outrigger system incorporating friction dampers through numerical analysis and shaking table tests. A 9 m tall steel structure specimen was designed by scaling down a 20-story benchmark model. The specimen was equally divided into ten floors and the outrigger beams together with the friction dampers can be installed in different floors. The normal force in the friction damper is adjustable so that its energy performance can be modified during the test. The seismic response of the specimen was evaluated by performing response spectral analysis (RSA) using the OpenSees numerical model. The equivalent damping ratio was included in the RSA in order to evaluate the energy dissipation resulted from the friction dampers. Based on the RSA results, the specimen configurations when outrigger locates at the sixth (6F), eighth (8F), and roof floors (RF) and when the normal force in the friction damper varies between 5 kN, 10 kN, and 20 kN were tested by imposing five different ground motions with the peak ground acceleration of 0.64g. Both the RSA and test results indicated that the maximum roof drift of the specimen was around 0.7% 0.4%, and 0.3% rad., when the outrigger locates at the RF, 8F, and 6F, respectively. The greater normal force applied in the friction damper generally result in a greater amount of energy dissipation and a smaller roof drift response. Based on the experimental and numerical results, the optimal design of the damped-outrigger system incorporating friction dampers are demonstrated in this study.

標題高強度鋼纖維混凝土開口剪力牆預測模型與行為研究
作者黃淳憶、何奕親、Binh Nguyen Doan、廖文正
關鍵字New RC、開孔剪力牆、鋼纖維混凝土、垂直牆段、不連續區
摘要

隨著高層建築的需求逐漸提升,為縮減構件尺寸以降低結構體的自重並有效率地提高可使用空間,各國已發展出高強度混凝土,在台灣的New RC計畫也開始推廣高強度材料的使用,其主要針對混凝土抗壓強度(𝑓c′)70MPa以上、鋼筋降伏強度(𝑓y)685MPa以上之營建材料進行研究。然而,隨著混凝土材料強度之提升,其性質將逐漸轉為脆性,因此依照現今之規範需要在應力干擾區或斷面幾何不連續區(D區)如梁柱接頭等,配置大量之剪力箍筋來維持件之韌性及剪力強度,但密集的剪力箍筋將導致施工上綁紮困難、灌漿時混凝土工作性不佳而使混凝土構件品質降低。而添加鋼纖維於高強度混凝土之中能大幅增加剪力強度、延緩脆性破壞,由於鋼纖維之間的橋接效應能有效抑制裂縫寬度擴張,因此能大幅減少橫向箍筋的配置,解決施工上的問題。 

根據過去針對結構不連續區(D區),如梁柱接頭與深梁等等進行試驗,結果顯示使用鋼纖維於高強度混凝土中可提高構件韌性與抗剪強度,因此已知使用鋼纖維混凝土於結構不連續區的效益。本研究針對同為結構不連續區域之構件的剪力牆,將執行4座高強度鋼纖維混凝土剪力牆實驗作探討,試驗參數包含開孔之有無、開孔型式、牆體鋼筋比、邊界柱箍筋量與開孔補強筋配置,欲透過試體強度變形行為和裂縫發展之觀察,釐清鋼纖維扮演的角色及其與橫向鋼筋互相搭配的效益,以修正預測模型並提供未來設計之參考。

TitleThe Study on Prediction of Lateral Load Displacement Force and Behavior of High Strength Steel Fiber Reinforced Concrete Walls with Opening
AuthorChun-Yi Huang, Yi-Ching Ho, Binh Nguyen Doan, Wen-Cheng Liao
KeywordsNew RC, Shear wall with opening, Steel fiber reinforced concrete, Vertical wall segment, Discontinuous zones
Abstract

With the gradual increase in the demand for high-rise buildings, countries all over the world have developed high-strength concrete in order to reduce the size of components to reduce the weight of the structure and increase the usable space efficiently. The New RC project in Taiwan has also begun to promote the use of high-strength materials. It mainly conducts research on construction materials with concrete compressive strength (𝑓c′) above 70MPa and steel yield strength ( 𝑓y ) above 685MPa. However, as the compressive strength of the concrete material increases, its properties will gradually become brittle. Therefore, according to the current code, it is necessary to deploy a large amount of shear reinforcements in the stress interference area or the geometric discontinuity zone (D zone) such as beam-column joints. Stirrups are used to maintain the toughness and shear strength of the parts, but dense shear stirrups cause difficulties in reinforcement assembling during construction, and poor workability of concrete during casting, which results in the poor quality of concrete components. Adding steel fibers to high-strength concrete can delay brittle failure. Since the bridging effect between steel fibers can effectively inhibit the expansion of crack width, it can greatly reduce the configuration of transverse stirrups and solve construction problems.

According to the past experiments on the structural discontinuity area (D area), such as beam-column joints and deep beams, etc., the results show that the use of steel fibers in high-strength concrete can improve the toughness and shear strength of components, so the benefits of steel fiber reinforced concrete in structural discontinuities is known. This study carried out 4 high-strength steel fiber reinforced concrete shear wall experiments as the shear walls that are also members of the structural discontinuity area. The test parameters include the presence or absence of openings, the type of openings, the ratio of steel bars in the wall, the amount of stirrups in the boundary columns, and the configuration of reinforcement bars in the openings. Through the observation of the strength and deformation behavior of the test body and the development of cracks, the role played by steel fibers and the benefits of collocation with transverse reinforcement will be clarified in order to revise the prediction model and provide reference for future design.

標題使用高強度撓曲鋼筋之低軸壓鋼筋混凝土柱振動台試驗
作者金芷萱、顏舜邦、鄭敏元
關鍵字振動台、變形量、勁度、高強度鋼筋
摘要本研究探討使用高強度撓曲鋼筋之鋼筋凝土柱在低軸壓下之振動台試驗反應(試體頂部混凝土塊自重提供柱軸壓約0.1Agfc’,其中Agfc’分別代表柱斷面面積與混凝土材料強度),總共測試兩組鋼筋混凝土構架試體,每組試體均包含一個混凝土底座、兩支淨高除以斷面高度超過12的柱、以及一個頂部混凝土塊。兩組構架試體先於振動台上完成十六組地震歷時測試;接著移至反力牆區完成靜態試驗。試體C1使用普通強度撓曲鋼筋(鋼筋降伏強度453 MPa)、試體 H1 使用高強度撓曲鋼筋(鋼筋降伏強度716 MPa),兩組試體以發展相同標稱撓曲強度作設計,所有設計參數均一致僅撓曲鋼筋量與強度不同。動力試驗結果顯示試體H1在所有十六組地震歷時下所得最大變形量均大於試體C1,兩試體最大變形量比介於1.3~2.4之間,在主筋降伏前,兩試體側向勁度隨著最大變形量增加而遞減,而試體H1具有較低的側向勁度與阻尼比;當試體進入非線性反應後,兩試體最大強度接近,分析結果顯示Shimazaki與Sozen模型可用以評估試體C1非線性最大位移評估的上限值,但該模型所得結果對試體H1並不保守。靜態試驗結果顯示(反力牆區)兩試體均能維持其最大撓曲強度達層間位移角10%,試體C1柱底在測試完後有嚴重混凝土剝落情況,試體H1除了柱底混凝土剝落外,其中一支柱底的兩支主筋在層間位移角10%第二個迴圈加載過程中斷裂,一般而言,試體C1在不同層間位移角的正規化能量消散能力大於試體H1。
TitleShaking Table Test of RC Columns Using High-Strength Flexural Reinforcement with Low Axial Load
AuthorChih-Hsuan Chin, Shun-Bang Yan ,Min-Yuan Cheng
Keywordsshaking table, drift, stiffness, high-strength reinforcement.
AbstractShaking table tests of reinforced concrete columns using high-strength flexural reinforcement and under low axial force (around 0.01 Ag fc’, where Ag and fc’ was the column gross section area and concrete cylinder strength, respectively) were investigated in this research. Two reinforced concrete frame specimens were tested. Each specimen consisted of a concrete base block, two columns with a clear-height-to-depth ratio greater than 12, and a top concrete block. The two specimens were first tested on the shaking table with 16 input ground motions, followed by static test on the strong floor. Specimen C1 used conventional strength longitudinal reinforcement (yield strength of 453 MPa) and specimen H1 used high-strength longitudinal reinforcement (yield strength of 716 MPa). The two specimens were designed to have the same flexural strength. Except for flexural reinforcement ratio and strength, all other design parameters were identical in the two specimens. Shaking table test results indicated the maximum drift of specimen H1 consistently larger than that of specimen C1 in all 16 table motions. The ratio of the maximum drift between the two specimens ranged from 1.3 to 2.4. Before yielding of the longitudinal reinforcement, lateral stiffness of the two specimens decreased as the maximum drift demand increased. Specimen H1 exhibited lower lateral stiffness and damping ratio. The inelastic responses indicated that the maximum strength of the two specimens were similar. Using Shimazaki and Sozen model provided an acceptable upper bound to estimate the maximum drift of specimen C1 but was not conservative for specimen H1. Static test results showed that both specimens sustained the maximum lateral force up to 10% drift ratio. Specimen C1 had severe concrete spalling at the column base. Specimen H1, in addition to severe concrete spalling at the column base, had two longitudinal reinforcement fracture during the 2nd cycle of 10% drift cycle. In general, specimen C1 had larger normalized energy absorption ability than that of specimen H1.
標題應用非線性靜力側推分析訂定建築物樓板需求加速度之程序與驗證
作者邱聰智、鍾立來、賴昱志、趙奕涵、 Jae-Do Kang、 Koichi Kajiwara
關鍵字非線性靜力側推分析、TEASPA、容量震譜、樓板需求加速度
摘要目前台灣非線性靜力分析常用TEASPA 提供的公式計算結構單自由度下的容量震譜,若非線性靜力分析能準確預測結構的反應,則對樓板加速度需求等等的計算會有極大的幫助。故本篇文章嘗試用台灣TEASPA 的評估方法去預測2015年在日本進行的十層樓RC 振動台實驗(E-Defense)的動力反應,以驗證其可信度。此篇文章先由TEASPA 算出的耐震容量值Sa 和單自由度模型以真實地震波激震後得到的最大加速度值進行比較,驗證TEASPA 之耐震容量準確度。再來將試體模型進行側推分析後得到之各樓層加速度值和真實實驗所得之各樓層最大加速度值進行比較分析,進而提出訂定各樓層預估加速度需求值的建議程序,該程序為以TEASPA 側推分析選定結構之耐震性能點,此時可得到的屋頂加速度,將之放大2 倍作為安裝在屋頂板上之非結構物的樓板設計需求值,接著以該屋頂層樓板加速度值為基準,乘以1/2 做為二樓樓板加速度需求值,其餘各層樓板加速度需求值則依樓層數線性內插。
TitleSeismic demand acceleration of non-structural elements attached to building floors using nonlinear pushover analysis.
AuthorTsung-Chih Chiou, Lap-Loi Chung ,Yu-Chih Lai, Yi-Han Chao, Jae-Do Kang, Koichi Kajiwara
Keywordsnonlinear pushover analysis, TEASPA, capacity Spectron, demand acceleration of building floor
AbstractTaiwan Earthquake Assessment for Structures by Pushover Analysis (TEASPA) can provide a capacity spectron of an equivalent single degree of freedom system. The predicted structural response can be applied to determine seismic demand acceleration of non-structural elements attached to building floors. The study adopts the shaking table testing results of ten-story RC building by E-defense in 2015 to verify TEASPA’s predicted response of the building. The predicted capacity Spectron Sa is compared to the maximum acceleration of an equivalent SDOF under a real excitation history. The comparison will be discussed in this paper. Eventually, the study proposed a procedure on seismic demand acceleration for non-structural components attached to building floors.