Vol.38/No.3 (149) (2023)

Vol.38/No.3 (149) (2023)

Special Issue: The Sixteenth National Conference on Structural Engineering and The Sixth National Conference on Earthquake Engineering
Guest Editor:  Professor Chien-Kuo Chiu, Professor Pei-Ching Chen

TitleOptimal Design of Steel Panel Damper in MRF and Optimal Design Software
AuthorYe-Ying Jan, Keh-Chyuan Tsai
Keywords

steel panel damper, moment resisting frame, seismic design, optimization, software development, web service.

Abstract

Incorporating a steel panel damper (SPD) into a moment resisting frame (MRF) can increase the stiffness, strength, and energy dissipation ability of the MRF. This research improves the previous optimization algorithm by using Sequential Least Squares Programming (SLSQP) nonlinear programming algorithm. The chosen algorithm takes less than one second to complete the optimization.Time-efficient algorithm has helped the authors to implement an optimization software into a web service to users. This paper demonstrates the optimization of single-cruciform (SC) and double-cruciform (DC) types of SPDs-to-beam subassemblies. Each SC or DC type has “Basic Design (BD)” and “1.5 times stiffened Design (1.5KD)” In the BD, the optimal depth of SPD in SC type is around 700~1200mm, while around 500~800mm in DC type. The optimal beam depth of SC type is around 700~1100mm, while around 600~800mm in DC type. The DC type can save up to 300 mm less beam depth than the SC type for a strong SPD of 1500kN nominal shear strength. Comparing the BD with the 1.5KD for both the SC and DC type subassemblies, the top three largest increases of dimensions are web thickness of elastic joint (EJ), boundary beam depth and web thickness. Applying a gravity load effect ratio 𝜉, it’s found that one can consider a ratio of 𝜉 up to 0.15 to consider the gravity load effect in the optimization without much additional cost. In the case of an 8-meter boundary beam with an SPD location eccentricity of 0.2 times the beam span, the induced SPD axial force would exceed 0.15 times of compression yield capacity of the EJ segment. It is recommended that the eccentricity be limited to less than 0.2 times the beam span. In the cases when boundary beam sizes are specified first, it is found that the DC type designs are more efficient in increasing structural stiffness than the SC type designs for the SPD-MRFs with long-span beams.

TitleShaking table test of damped-outrigger structure incorporating friction dampers
AuthorMing-Ching Chen,Meng-Lin Chung, Pao-Chun Lin
Keywordsoutrigger, large-scale test, friction damper, numerical analysis, steel structure
Abstract

The main purpose of this study is to investigate the seismic performance of damped-outrigger system incorporating friction dampers through numerical analysis and shaking table tests. A 9 m tall steel structure specimen was designed by scaling down a 20-story benchmark model. The specimen was equally divided into ten floors and the outrigger beams together with the friction dampers can be installed in different floors. The normal force in the friction damper is adjustable so that its energy performance can be modified during the test. The seismic response of the specimen was evaluated by performing response spectral analysis (RSA) using the OpenSees numerical model. The equivalent damping ratio was included in the RSA in order to evaluate the energy dissipation resulted from the friction dampers. Based on the RSA results, the specimen configurations when outrigger locates at the sixth (6F), eighth (8F), and roof floors (RF) and when the normal force in the friction damper varies between 5 kN, 10 kN, and 20 kN were tested by imposing five different ground motions with the peak ground acceleration of 0.64g. Both the RSA and test results indicated that the maximum roof drift of the specimen was around 0.7% 0.4%, and 0.3% rad., when the outrigger locates at the RF, 8F, and 6F, respectively. The greater normal force applied in the friction damper generally result in a greater amount of energy dissipation and a smaller roof drift response. Based on the experimental and numerical results, the optimal design of the damped-outrigger system incorporating friction dampers are demonstrated in this study.

TitleThe Study on Prediction of Lateral Load Displacement Force and Behavior of High Strength Steel Fiber Reinforced Concrete Walls with Opening
AuthorChun-Yi Huang, Yi-Ching Ho, Binh Nguyen Doan, Wen-Cheng Liao
KeywordsNew RC, Shear wall with opening, Steel fiber reinforced concrete, Vertical wall segment, Discontinuous zones
Abstract

With the gradual increase in the demand for high-rise buildings, countries all over the world have developed high-strength concrete in order to reduce the size of components to reduce the weight of the structure and increase the usable space efficiently. The New RC project in Taiwan has also begun to promote the use of high-strength materials. It mainly conducts research on construction materials with concrete compressive strength (𝑓c′) above 70MPa and steel yield strength ( 𝑓y ) above 685MPa. However, as the compressive strength of the concrete material increases, its properties will gradually become brittle. Therefore, according to the current code, it is necessary to deploy a large amount of shear reinforcements in the stress interference area or the geometric discontinuity zone (D zone) such as beam-column joints. Stirrups are used to maintain the toughness and shear strength of the parts, but dense shear stirrups cause difficulties in reinforcement assembling during construction, and poor workability of concrete during casting, which results in the poor quality of concrete components. Adding steel fibers to high-strength concrete can delay brittle failure. Since the bridging effect between steel fibers can effectively inhibit the expansion of crack width, it can greatly reduce the configuration of transverse stirrups and solve construction problems.

According to the past experiments on the structural discontinuity area (D area), such as beam-column joints and deep beams, etc., the results show that the use of steel fibers in high-strength concrete can improve the toughness and shear strength of components, so the benefits of steel fiber reinforced concrete in structural discontinuities is known. This study carried out 4 high-strength steel fiber reinforced concrete shear wall experiments as the shear walls that are also members of the structural discontinuity area. The test parameters include the presence or absence of openings, the type of openings, the ratio of steel bars in the wall, the amount of stirrups in the boundary columns, and the configuration of reinforcement bars in the openings. Through the observation of the strength and deformation behavior of the test body and the development of cracks, the role played by steel fibers and the benefits of collocation with transverse reinforcement will be clarified in order to revise the prediction model and provide reference for future design.

TitleShaking Table Test of RC Columns Using High-Strength Flexural Reinforcement with Low Axial Load
AuthorChih-Hsuan Chin, Shun-Bang Yan ,Min-Yuan Cheng
Keywordsshaking table, drift, stiffness, high-strength reinforcement.
AbstractShaking table tests of reinforced concrete columns using high-strength flexural reinforcement and under low axial force (around 0.01 Ag fc’, where Ag and fc’ was the column gross section area and concrete cylinder strength, respectively) were investigated in this research. Two reinforced concrete frame specimens were tested. Each specimen consisted of a concrete base block, two columns with a clear-height-to-depth ratio greater than 12, and a top concrete block. The two specimens were first tested on the shaking table with 16 input ground motions, followed by static test on the strong floor. Specimen C1 used conventional strength longitudinal reinforcement (yield strength of 453 MPa) and specimen H1 used high-strength longitudinal reinforcement (yield strength of 716 MPa). The two specimens were designed to have the same flexural strength. Except for flexural reinforcement ratio and strength, all other design parameters were identical in the two specimens. Shaking table test results indicated the maximum drift of specimen H1 consistently larger than that of specimen C1 in all 16 table motions. The ratio of the maximum drift between the two specimens ranged from 1.3 to 2.4. Before yielding of the longitudinal reinforcement, lateral stiffness of the two specimens decreased as the maximum drift demand increased. Specimen H1 exhibited lower lateral stiffness and damping ratio. The inelastic responses indicated that the maximum strength of the two specimens were similar. Using Shimazaki and Sozen model provided an acceptable upper bound to estimate the maximum drift of specimen C1 but was not conservative for specimen H1. Static test results showed that both specimens sustained the maximum lateral force up to 10% drift ratio. Specimen C1 had severe concrete spalling at the column base. Specimen H1, in addition to severe concrete spalling at the column base, had two longitudinal reinforcement fracture during the 2nd cycle of 10% drift cycle. In general, specimen C1 had larger normalized energy absorption ability than that of specimen H1.
TitleSeismic demand acceleration of non-structural elements attached to building floors using nonlinear pushover analysis.
AuthorTsung-Chih Chiou, Lap-Loi Chung ,Yu-Chih Lai, Yi-Han Chao, Jae-Do Kang, Koichi Kajiwara
Keywordsnonlinear pushover analysis, TEASPA, capacity Spectron, demand acceleration of building floor
AbstractTaiwan Earthquake Assessment for Structures by Pushover Analysis (TEASPA) can provide a capacity spectron of an equivalent single degree of freedom system. The predicted structural response can be applied to determine seismic demand acceleration of non-structural elements attached to building floors. The study adopts the shaking table testing results of ten-story RC building by E-defense in 2015 to verify TEASPA’s predicted response of the building. The predicted capacity Spectron Sa is compared to the maximum acceleration of an equivalent SDOF under a real excitation history. The comparison will be discussed in this paper. Eventually, the study proposed a procedure on seismic demand acceleration for non-structural components attached to building floors.